usdtウォレットおすすめ

<ウェブサイト名>

<現在の時刻>

出典: 標準

International Affairs Students Current Students Alumni Faculty/Staff Careers--> TOHOKU UNIVERSITYCREATING GLOBAL EXCELLENCE Search 日本語 Contact Tohoku University --> About Facts & Figures Facilities Organization Chart History President's Message Top Global University Project Designated National University Global Network Promotional Videos Academics Undergraduate Graduate Courses in English Exchange Programs Summer Programs Double Degree Programs Academic Calendar Syllabus Admissions Undergraduate Admissions Graduate Admissions Fees and Expenses Financial Aid Research Feature Highlights Research Releases University Research News Research Institutes Visitor Research Center Research Profiles Academic Research Staff Campus Life International Support Office IT Services Facilities Dining & Shops Campus Bus Clubs & Circles News University News Research--> Arts & Culture Health & Sports Campus & Community Press Release--> International Visit Alumni Careers Events Exhibits Music Special Event Lecture Alumni--> Map & Directions Campus Maps & Bus--> Facilities Map--> TOHOKUUNIVERSITY About Academics Admissions Research Campus Life News Events International Affairs Students Current Students Alumni Faculty/Staff Promotional Videos Subscribe to our Newsletter Map & Directions Contact Jobs & Vacancies Emergency Information Site Map 日本語 Close Home Research News No Assembly Required: Self-assembling Silicone-based Polymers Research News No Assembly Required: Self-assembling Silicone-based Polymers 2018-10-23 Scientists at Tokyo Institute of Technology, RIKEN and Tohoku University have developed a silicone polymer chain that can self-assemble into a 3D periodic structure. They achieved this by using their recently reported self-assembling triptycene molecules to modify the ends of the polymer chains. The development of novel soft materials for various optical, mechanical, heat/charge transportation and nanotechnological applications would greatly benefit from techniques to create polymer assemblies in periodically ordered structures. Such ordered structures are created using molecular scaffolds or by modifying certain parts of the polymers used so that they self-assemble into the desired shape. However, researchers nowadays consider that terminal functionalization (modifying both ends of a polymer chain) is not very effective for creating periodically ordered structures. That's why scientists from Tokyo Institute of Technology (Tokyo Tech), led by Fumitaka Ishiwari, were interested in revisiting one of their recently developed triptycene molecules, called 1,8,13-Trip. The team had already demonstrated that this molecule can reliably self-assemble into a periodic 3D structure made of parallel 2D sheets separated from each other by a fixed distance (see Fig. 1). "We were interested in investigating whether the powerful self-assembling ability of this triptycene motif would also operate in polymer systems," explains Ishiwari. Figure 1. Self-assembling 2D+1D polymer structures. © Fumitaka Ishiwari Therefore, the team designed polydimethylsiloxane (PDMS) chains with the ends replaced by a triptycene molecule. They hoped that these modified silicone chains would also exhibit the promising self-assembling behavior observed for 1,8,13-Trip alone, and thus had to run many different experiments to prove it, including Synchrotron-Radiation X-ray diffraction/scattering using the BL45XU beamline at SPring-8 (Hyogo, Japan), differential scanning calorimetry and spectroscopy measurements. Fortunately, all results seemed to indicate that the modified PDMS chains had self-assembled into the 3D periodic structure shown in Fig. 2. This was also verified by analyzing the differences in the flow characteristics of the modified PDMS chains and regular PDMS chains. Figure 2. Structure of the modified PDMS molecules. © Fumitaka Ishiwari The team's findings are very promising because the triptycene motif used is simple and easy to synthesize via short steps, and may provide a powerful tool for organizing polymers and reinforcing their structural and physical properties. "The present finding will update the general notion that terminal functionalization is not effective for achieving the controlled assembly of polymers into a periodically ordered structure," concludes Ishiwari. The team will carry on investigating the self-organization of polymers, and it is hoped that the results will lead to the development of novel materials and synthesis techniques. Professor Masaki Takata of Tohoku University attributed the success of the study to the collaborative efforts of the Network Joint Research Center for Materials and Devices and the large scale Synchrotron Radiation facility, SPring-8, managed by RIKEN. He added that "this would hopefully also trigger a big demand for further high quality materials, which can be developed at the next-generation 3GeV synchrotron facility, due to begin construction at Tohoku University next year." Reference Title: Terminal Functionalization with a Triptycene Motif That Dramatically Changes the Structural and Physical Properties of an Amorphous Polymer Author: Fumitaka Ishiwari, Gen Okabe, Hibiki Ogiwara, Takashi Kajitani, Masatoshi Tokita, Masaki Takata, and Takanori Fukushima* Journal: Journal of the American Chemical Society DOI: 10.1021/jacs.8b09242 News in Japanese Contact: Emiko KawaguchiPublic Relations Section, Tokyo Institute of TechnologyTel: +81-3-5734-2975 Email: mediajim.titech.ac.jp Jens WilkinsonGlobal Communications Team, RIKENEmail: prriken.jp Masaki Takata, ProfessorIMRAM, Tohoku UniversityEmail: takatamatagen.tohoku.ac.jp Archives 2014&#24180; 2015&#24180; 2016&#24180; 2017&#24180; 2018&#24180; 2019&#24180; 2020&#24180; 2021&#24180; 2022&#24180; 2023&#24180; Page Top About Tohoku University Academics Admissions Research Campus Life News Events International Affairs Students Alumni Promotional Videos Subscribe to our Newsletter Map & Directions Contact Tohoku University Jobs & Vacancies Emergency Information Site Map Media Enquiries Parent & Family Support Public Facilities Contact Tohoku University

岡村製作所バロン ステークカジノトロン ライブディーラーとライブカジノゲームをプレイ jamminjars
Copyright ©usdtウォレットおすすめ The Paper All rights reserved.